skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Chen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Abstract Thin‐film solid‐state metal dealloying (thin‐film SSMD) is a promising method for fabricating nanostructures with controlled morphology and efficiency, offering advantages over conventional bulk materials processing methods for integration into practical applications. Although machine learning (ML) has facilitated the design of dealloying systems, the selection of key thermal treatment parameters for nanostructure formation remains largely unknown and dependent on experimental trial and error. To overcome this challenge, a workflow enabling high‐throughput characterization of thermal treatment parameters is demonstrated using a laser‐based thermal treatment to create temperature gradients on single thin‐film samples of Nb‐Al/Sc and Nb‐Al/Cu. This continuous thermal space enables observation of dealloying transitions and the resulting nanostructures of interest. Through synchrotron X‐ray multimodal and high‐throughput characterization, critical transitions and nanostructures can be rapidly captured and subsequently verified using electron microscopy. The key temperatures driving chemical reactions and morphological evolutions are clearly identified. While the oxidation may influence nanostructure formation during thin‐film treatment, the dealloying process at the dealloying front involves interactions solely between the dealloying elements, highlighting the availability and viability of the selected systems. This approach enables efficient exploration of the dealloying process and validation of ML predictions, thereby accelerating the discovery of thin‐film SSMD systems with targeted nanostructures. 
    more » « less
    Free, publicly-accessible full text available April 15, 2026
  3. ABSTRACT Most studies of developing visual attention are conducted using screen‐based tasks in which infants move their eyes to select where to look. However, real‐world visual exploration entails active movements of both eyes and head to bring relevant areas in view. Thus, relatively little is known about how infants coordinate their eyes and heads to structure their visual experiences. Infants were tested every 3 months from 9 to 24 months while they played with their caregiver and three toys while sitting in a highchair at a table. Infants wore a head‐mounted eye tracker that measured eye movement toward each of the visual targets (caregiver's face and toys) and how targets were oriented within the head‐centered field of view (FOV). With age, infants increasingly aligned novel toys in the center of their head‐centered FOV at the expense of their caregiver's face. Both faces and toys were better centered in view during longer looking events, suggesting that infants of all ages aligned their eyes and head to sustain attention. The bias in infants’ head‐centered FOV could not be accounted for by manual action: Held toys were more poorly centered compared with non‐held toys. We discuss developmental factors—attentional, motoric, cognitive, and social—that may explain why infants increasingly adopted biased viewpoints with age. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. Free, publicly-accessible full text available January 10, 2026
  5. Exploring the complexity of the epithelial-to-mesenchymal transition (EMT) unveils a diversity of potential cell fates; however, the exact timing and mechanisms by which early cell states diverge into distinct EMT trajectories remain unclear. Studying these EMT trajectories through single-cell RNA sequencing is challenging due to the necessity of sacrificing cells for each measurement. In this study, we employed optimal-transport analysis to reconstruct the past trajectories of different cell fates during TGF-beta-induced EMT in the MCF10A cell line. Our analysis revealed three distinct trajectories leading to low EMT, partial EMT, and high EMT states. Cells along the partial EMT trajectory showed substantial variations in the EMT signature and exhibited pronounced stemness. Throughout this EMT trajectory, we observed a consistent downregulation of theEEDandEZH2genes. This finding was validated by recent inhibitor screens of EMT regulators and CRISPR screen studies. Moreover, we applied our analysis of early-phase differential gene expression to gene sets associated with stemness and proliferation, pinpointingITGB4,LAMA3, andLAMB3as genes differentially expressed in the initial stages of the partial versus high EMT trajectories. We also found thatCENPF,CKS1B, andMKI67showed significant upregulation in the high EMT trajectory. While the first group of genes aligns with findings from previous studies, our work uniquely pinpoints the precise timing of these upregulations. Finally, the identification of the latter group of genes sheds light on potential cell cycle targets for modulating EMT trajectories. 
    more » « less
  6. The rapid development of computation power and machine learning algorithms has paved the way for automating scientific discovery with a scanning probe microscope (SPM). The key elements toward operationalization of the automated SPM are the interface to enable SPM control from Python codes, availability of high computing power, and development of workflows for scientific discovery. Here, we build a Python interface library that enables controlling an SPM from either a local computer or a remote high-performance computer, which satisfies the high computation power need of machine learning algorithms in autonomous workflows. We further introduce a general platform to abstract the operations of SPM in scientific discovery into fixed-policy or reward-driven workflows. Our work provides a full infrastructure to build automated SPM workflows for both routine operations and autonomous scientific discovery with machine learning. 
    more » « less
  7. Abstract Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using ‘off-the-shelf’ products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells intoAlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhancedAlloCAR-NKT cells with high yield and purity. We generatedAlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties ofAlloCAR-NKT cells support their potential for clinical translation. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  8. Abstract Traditionally, the exogenous control of gaze by external saliencies and the endogenous control of gaze by knowledge and context have been viewed as competing systems, with late infancy seen as a period of strengthening top‐down control over the vagaries of the input. Here we found that one‐year‐old infants control sustained attention through head movements that increase the visibility of the attended object. Freely moving one‐year‐old infants ( n  = 45) wore head‐mounted eye trackers and head motion sensors while exploring sets of toys of the same physical size. The visual size of the objects, a well‐documented salience, varied naturally with the infant's moment‐to‐moment posture and head movements. Sustained attention to an object was characterized by the tight control of head movements that created and then stabilized a visual size advantage for the attended object for sustained attention. The findings show collaboration between exogenous and endogenous attentional systems and suggest new hypotheses about the development of sustained visual attention. 
    more » « less